La(0.8)Sr(0.2)MnO(3-δ) decorated with Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ): a bifunctional surface for oxygen electrocatalysis with enhanced stability and activity.

نویسندگان

  • Marcel Risch
  • Kelsey A Stoerzinger
  • Shingo Maruyama
  • Wesley T Hong
  • Ichiro Takeuchi
  • Yang Shao-Horn
چکیده

Developing highly active and stable catalysts based on earth-abundant elements for oxygen electrocatalysis is critical to enable efficient energy storage and conversion. In this work, we took advantage of the high intrinsic oxygen reduction reaction (ORR) activity of La(0.8)Sr(0.2)MnO(3-δ) (LSMO) and the high intrinsic oxygen evolution reaction (OER) activity of Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ) (BSCF) to develop a novel bifunctional catalyst. We used pulsed laser deposition to fabricate well-defined surfaces composed of BSCF on thin-film LSMO grown on (001)-oriented Nb-doped SrTiO3. These surfaces exhibit bifunctionality for oxygen electrocatalysis with enhanced activities and stability for both the ORR and OER that rival the state-of-the-art single- and multicomponent catalysts in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxygen surface exchange kinetics of SrTi(1-x)Fe(x)O(3-δ) mixed conducting oxides.

The oxygen surface exchange kinetics of mixed conducting perovskite oxides SrTi(1-x)Fe(x)O(3-δ) (x = 0, 0.01, 0.05, 0.35, 0.5) has been investigated as a function of temperature and oxygen partial pressure using the pulse-response (18)O-(16)O isotope exchange (PIE) technique. Arrhenius activation energies range from 140 kJ mol(-1) for x = 0 to 86 kJ mol(-1) for x = 0.5. Extrapolating the temper...

متن کامل

Heterostructured electrode with concentration gradient shell for highly efficient oxygen reduction at low temperature

Heterostructures of oxides have been widely investigated in optical, catalytic and electrochemical applications, because the heterostructured interfaces exhibit pronouncedly different transport, charge, and reactivity characteristics compared to the bulk of the oxides. Here we fabricated a three-dimensional (3D) heterostructured electrode with a concentration gradient shell. The concentration g...

متن کامل

Covalency-reinforced oxygen evolution reaction catalyst

The oxygen evolution reaction that occurs during water oxidation is of considerable importance as an essential energy conversion reaction for rechargeable metal-air batteries and direct solar water splitting. Cost-efficient ABO3 perovskites have been studied extensively because of their high activity for the oxygen evolution reaction; however, they lack stability, and an effective solution to t...

متن کامل

Suppression of Sr surface segregation in La(1-x)Sr(x)Co(1-y)Fe(y)O(3-δ): a first principles study.

Based on systematic first principles calculations, we investigate Sr surface segregation (SSS) in La(1-x)Sr(x)Co(1-y)Fe(y)O(3-δ) (LSCF) (a typical perovskite ABO(3) compound), a bottleneck causing efficiency degradation of solid oxide fuel cells. We identify two basic thermodynamic driving forces for SSS and suggest two possible ways to suppress SSS: applying compressive strain and reducing sur...

متن کامل

A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells

Tremendous efforts to develop high-efficiency reduced-temperature (≤ 600°C) solid oxide fuel cells are motivated by their potentials for reduced materials cost, less engineering challenge, and better performance durability. A key obstacle to such fuel cells arises from sluggish oxygen reduction reaction kinetics on the cathodes. Here we reported that an oxide hybrid, featuring a nanoporous Sm(0...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 136 14  شماره 

صفحات  -

تاریخ انتشار 2014